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Abstract

In this report, we describe the submission of team RRI MRC to
the FFSVC 2020.
Index Terms: speaker verification, speaker embeddings

1. Introduction

The FFSVC 2020 includes three tasks: two text-dependent far-
field speaker verification tasks and one text-independent far-
field speaker verification task. However, our solutions for all
tasks are based on text-independent system. Therefore, we will
focus on the core text-independent scenario and discuss the dif-
ferences between three individual solutions.

2. Experimental setup
2.1. Training data

We used several datasets during the challenge: FFSVC 2020
challenge dataset, HI-MIA (SLRS8S) [1], CN-Celeb (SLR82)
[2], Aishell (SLR33) [3]], VoxCelebl [4] and VoxCeleb2 [5].
Specifically, for all three tasks we’ve started with a model,
trained on VoxCelebl and VoxCeleb2. For task 1 we fine-
tuned the model on FFSVC 2020 and HI-MIA datasets. For
task 2, the fine-tuning was done on FFSVC 2020, HI-MIA, CN-
Celeb and Aishell datasets. Finally, we fine-tuned the model on
FFSVC2020, HI-MIA and CN-Celeb datasets for task 3.

2.2. Development data

Initially we used the development set trial lists, provided by the
organizers of the challenge. However, we found them to be
quite ”simple”” and not comparable to the public part of test tri-
als in terms of evaluation metrics. Therefore, we generated our
own trial lists in accordance with original structure and contain-
ing 1567500 / 2585900 / 1567500 trials for tasks 1 to 3 respec-
tively. Evaluation metrics acquired using new development set
trial lists were more comparable to actual evaluation metrics on
public part of the test set.

3. System description

Our approach is based on recent advances in the field of speaker
recognition where deep neural networks (DNNs) play an impor-
tant role.

3.1. Pre-processing

We followed the Voxceleb recipe{]_-] from Kaldi for training
DNNSs used to extract utterance-level speaker embeddings. The
training data was augmented with reverbed additive noise us-
ing samples from Musan musi and RIRs from Room Impulse

Ihttps://github.com/kaldi-asr/kaldi/blob/
master/egs/voxceleb/v2/
“http://www.openslr.org/17/

Response and Noise Databas In addition we added extra far-
field samples, processed via beamforming (Beamformlﬂ) and
weighted prediction error (NARA-WPE [6]) algorithms to the
training data.

We tried to use other kinds of augmentations during model
selection as well, such as using other kinds of noises from Mu-
san, reverberation for near-field samples, volume augmentation,
tempo change, but it did not lead to noticeable improvements on
both original and extended trial lists. Voice activity detection
(VAD) was omitted for the same reason.

3.2. Features

We used 40-dimensional log filterbanks as feature represen-
tations of audio signal to train different speaker embedder
networks. Our implementation is based on the open-source
python,speech,featuresﬂ package. Both features were
extracted from signal frames of 25ms length with 10ms shift.
Frequency limits were set to 20-7600 Hz. Both features were
mean normalized within the entire feature sequence.

3.3. Embedding extractors

We used ResNet34 topology from [[7] as the basis from our so-
lution due to its superior peformance compared to the x-vector
approach in the recent VoxCeleb SRC Challenge 2019 [§]]. It
uses statistical pooling which accumulates mean and standard
deviation statistics for the frame-level outputs to get a fixed-
dimensional utterance-level representation. The ResNet34
model is trained entirely on single channel data.

We compared a few alternative ResNet architectures includ-
ing ResNet50 and found that the one used in [9] yields the best
performance on the development data. We selected it for our
experiments. Our implementations are based on the PyTorch
framework [[10].

Each network was initially trained on VoxCelebl and Vox-
Celeb2 datasets, and then fine-tuned on datasets, corresponding
to a given task. It was done mostly to save computational re-
sources and time spent on individual experiments.

We followed the two-stage training strategy described in
[9]. First, the network was trained on VoxCelebl and Vox-
Celeb2 datasets with the standard Softmax loss. Second, on the
fine-tuning stage, the additive angular margin loss (further re-
ferred to as AAM-Softmax) was used after replacing all the lay-
ers following the embedding layer. We used the AAM-Softmax
loss with scale s = 30 and margin m = 0.25.

We used chunks of 600 frames for training the ResNet em-
bedder. These chunks were obtained by random cropping of the
training segments. In the testing stage, embeddings were ex-
tracted from the full-length feature sequences without any crop-

3http://www.openslr.org/resources/28/

4https://github.com/xanguera/BeamformIt

Shttps://pypi.org/project/python_speech_
features/
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ping.

The network was trained using SGD with momentum=0.9
and weight decay=0.0001. In addition, we used different learn-
ing rate for layers during fine-tuning. Starting from the last
layer, the learning rates were reducing by a factor of 10 for each
following layer.

3.4. Backend

For the ResNet based embeddings we used cosine similarity
based scoring. No additional score normalization was done.
Previously we’ve also found out that LDA-PLDA based scor-
ing does not help when embeddings are extracted with ResNet,
therefore, we used raw cosine similarity-based scores. To ac-
quire embeddings of multichannel utterances we’ve averaged
embeddings for individual channels.
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